|
|
#define SERIAL_SPEED 115200
// OTA
#define OTA_PASSWORD "n87z21Tx5%P%EX&*"
// DebugRemote
RemoteDebug Debug;
// LED
#define LED_NUM 300
#define LED_PIN 5 // = D5
#define LED_CHIPSET WS2812B
#define LED_COLOR_ORDER GRB
#define LED_BRIGHTNESS_DEFAULT 96
#define LED_SPEED_DEFAULT 120
#define LED_COLOR_DEFAULT CRGB::Red
#define LED_EFFECT_CYLON "cylon"
#define LED_EFFECT_COLORPATTERN "colorp"
#define LED_EFFECT_COLORTEMP "colort"
#define LED_EFFECT_FIRE "fire"
#define LED_EFFECT_BREATHING "breathing"
#define LED_EFFECT_ERROR "error"
// WIFI
#define WIFI_SSID "XXX"
#define WIFI_PASSWORD "XXX"
// MQTT
#define MQTT_SERVER "XXX"
#define MQTT_PORT 1883
#define MQTT_USER "XXX"
#define MQTT_PASS "XXX"
#define MQTT_LED_COMMAND "strip1/switch"
#define MQTT_LED_STATE "strip1/status"
#define MQTT_LED_EFFECT_COMMAND "strip1/effect/switch"
#define MQTT_LED_EFFECT_STATE "strip1/effect/status"
#define MQTT_LED_BRIGHTNESS_COMMAND "strip1/brightness/switch"
#define MQTT_LED_BRIGHTNESS_STATE "strip1/brightness/status"
#define MQTT_LED_SPEED_COMMAND "strip1/speed/switch"
#define MQTT_LED_SPEED_STATE "strip1/speed/status"
#define MQTT_LED_COLOR_COMMAND "strip1/color/switch"
#define MQTT_LED_COLOR_STATE "strip1/color/status"
void setupOTA();void setupWifi();void testConnectMQTT();void callbackMQTT(char* topic, byte* payload, unsigned int length);void mqttSendState();void mqttSendEffectState();void mqttSendBrightnessState();void mqttSendSpeedState();void mqttSendColorState();void ledBlackAll();void ledCylon();void ledError();void ledBreathing();///////////////////////////////// ColorPalette
// This example shows several ways to set up and use 'palettes' of colors
// with FastLED.
//
// These compact palettes provide an easy way to re-colorize your
// animation on the fly, quickly, easily, and with low overhead.
//
// USING palettes is MUCH simpler in practice than in theory, so first just
// run this sketch, and watch the pretty lights as you then read through
// the code. Although this sketch has eight (or more) different color schemes,
// the entire sketch compiles down to about 6.5K on AVR.
//
// FastLED provides a few pre-configured color palettes, and makes it
// extremely easy to make up your own color schemes with palettes.
//
// Some notes on the more abstract 'theory and practice' of
// FastLED compact palettes are at the bottom of this file.
CRGBPalette16 currentPalette;TBlendType currentBlending;
extern CRGBPalette16 myRedWhiteBluePalette;extern const TProgmemPalette16 myRedWhiteBluePalette_p PROGMEM;
// This example shows how to set up a static color palette
// which is stored in PROGMEM (flash), which is almost always more
// plentiful than RAM. A static PROGMEM palette like this
// takes up 64 bytes of flash.
const TProgmemPalette16 myRedWhiteBluePalette_p PROGMEM ={ CRGB::Red, CRGB::Gray, // 'white' is too bright compared to red and blue
CRGB::Blue, CRGB::Black,
CRGB::Red, CRGB::Gray, CRGB::Blue, CRGB::Black,
CRGB::Red, CRGB::Red, CRGB::Gray, CRGB::Gray, CRGB::Blue, CRGB::Blue, CRGB::Black, CRGB::Black};
void ledColorPattern();void FillLEDsFromPaletteColors(uint8_t colorIndex);void ChangePalettePeriodically();void SetupTotallyRandomPalette();void SetupBlackAndWhiteStripedPalette();void SetupPurpleAndGreenPalette();//////////////////////////////////////////////// ColorTemperature
// THIS EXAMPLE demonstrates the second, "color temperature" control.
// It shows a simple rainbow animation first with one temperature profile,
// and a few seconds later, with a different temperature profile.
//
// The first pixel of the strip will show the color temperature.
//
// HELPFUL HINTS for "seeing" the effect in this demo:
// * Don't look directly at the LED pixels. Shine the LEDs aganst
// a white wall, table, or piece of paper, and look at the reflected light.
//
// * If you watch it for a bit, and then walk away, and then come back
// to it, you'll probably be able to "see" whether it's currently using
// the 'redder' or the 'bluer' temperature profile, even not counting
// the lowest 'indicator' pixel.
//
//
// FastLED provides these pre-conigured incandescent color profiles:
// Candle, Tungsten40W, Tungsten100W, Halogen, CarbonArc,
// HighNoonSun, DirectSunlight, OvercastSky, ClearBlueSky,
// FastLED provides these pre-configured gaseous-light color profiles:
// WarmFluorescent, StandardFluorescent, CoolWhiteFluorescent,
// FullSpectrumFluorescent, GrowLightFluorescent, BlackLightFluorescent,
// MercuryVapor, SodiumVapor, MetalHalide, HighPressureSodium,
// FastLED also provides an "Uncorrected temperature" profile
// UncorrectedTemperature;
#define TEMPERATURE_1 Tungsten100W
#define TEMPERATURE_2 OvercastSky
// How many seconds to show each temperature before switching
#define DISPLAYTIME 20
// How many seconds to show black between switches
#define BLACKTIME 3
void colorTemp();///////////////////////////////////////////////Fire202
bool gReverseDirection = false;// This basic one-dimensional 'fire' simulation works roughly as follows:
// There's a underlying array of 'heat' cells, that model the temperature
// at each point along the line. Every cycle through the simulation,
// four steps are performed:
// 1) All cells cool down a little bit, losing heat to the air
// 2) The heat from each cell drifts 'up' and diffuses a little
// 3) Sometimes randomly new 'sparks' of heat are added at the bottom
// 4) The heat from each cell is rendered as a color into the leds array
// The heat-to-color mapping uses a black-body radiation approximation.
//
// Temperature is in arbitrary units from 0 (cold black) to 255 (white hot).
//
// This simulation scales it self a bit depending on NUM_LEDS; it should look
// "OK" on anywhere from 20 to 100 LEDs without too much tweaking.
//
// I recommend running this simulation at anywhere from 30-100 frames per second,
// meaning an interframe delay of about 10-35 milliseconds.
//
// Looks best on a high-density LED setup (60+ pixels/meter).
//
//
// There are two main parameters you can play with to control the look and
// feel of your fire: COOLING (used in step 1 above), and SPARKING (used
// in step 3 above).
//
// COOLING: How much does the air cool as it rises?
// Less cooling = taller flames. More cooling = shorter flames.
// Default 50, suggested range 20-100
#define COOLING 55
// SPARKING: What chance (out of 255) is there that a new spark will be lit?
// Higher chance = more roaring fire. Lower chance = more flickery fire.
// Default 120, suggested range 50-200.
#define SPARKING 120
void fire();
|